Simultaneous Similarity Learning and Feature-Weight Learning for Document Clustering
نویسندگان
چکیده
A key problem in document classification and clustering is learning the similarity between documents. Traditional approaches include estimating similarity between feature vectors of documents where the vectors are computed using TF-IDF in the bag-of-words model. However, these approaches do not work well when either similar documents do not use the same vocabulary or the feature vectors are not estimated correctly. In this paper, we represent documents and keywords using multiple layers of connected graphs. We pose the problem of simultaneously learning similarity between documents and keyword weights as an edge-weight regularization problem over the different layers of graphs. Unlike most feature weight learning algorithms, we propose an unsupervised algorithm in the proposed framework to simultaneously optimize similarity and the keyword weights. We extrinsically evaluate the performance of the proposed similarity measure on two different tasks, clustering and classification. The proposed similarity measure outperforms the similarity measure proposed by (Muthukrishnan et al., 2010), a state-of-theart classification algorithm (Zhou and Burges, 2007) and three different baselines on a variety of standard, large data sets.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملDocument Clustering with Feature Behavior based Distance Analysis
Machine learning and data mining methods are applied to perform large data analysis. Clustering methods are applied to group the related data values. Partitional clustering and hierarchical clustering methods are applied to handle the clustering operations. Tabular format data processing is carried out under the partitional clustering models. Tree based data clustering is adapted in the hierarc...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کامل